

Analysis of the trade-off between resolution and bandwidth for a nanoforce sensor based on diamagnetic springs.

Emmanuel Piat, Joël Abadie, Stéphane Oster

ICRA 2012 - St Paul, Minnesota

http://www.femto-st.fr/fr/Departements-de-recherche/AS2M/Accueil/

Only micro-nano force effects can be directly measured

A force transducer is needed

Displacement measured with appropriate sensors

Knowing the displacement, the force must be reconstructed

Context of study

Ē

Maglevtube

(seismic mass)

3

Sensor configuration

Force measured: along x axis Stiffness: 0.005 N/m to 0.03 N/m Typ. resolution: 1 to 5 nN Range: 1 nN to 40 µN Mass: 20 to 80 mg Typ. resonant frequency: 3 Hz

 M_2

Signal processing

Passive force sensor

5

Signal processing

Kalman filter tuning parameter

Time-varying Kalman filter synthesis:

E. Piat, J. Abadie, S. Oster, Nanoforce estimation with Kalman filtering applied to a force sensor based on diamagnetic levitation, Proc. of the IEEE int. Conf. on Intelligent Robots and Systems (IROS), pp 39-44, San Francisco, USA, Sept. 25-30 2011.

Deconvolution of a noisy ouput: introduce a necessary trade-off between resolution and bandwidth Driven here by a single scalar parameter (N²/Hz): $W_{\dot{F}}$

Autocorrelation function of internal $\,\omega(t)$ white gaussian process:

Uncertainty modeling of the input force

$$\dot{F}(t) = \omega(t)$$

6

Force estimation

Trade-off analysis

Study for fixed values of $W_{\dot{F}}$ and T_s (and independence of *a priori* knowledge on X_0^{e})

A 3rd order-state equation:

 A^{κ} , B^{κ} , C^{κ} , D^{κ} are functions of R and $Q = W_{F} \eta(T_{s})$

Force sensor resolution study

Corresponds to the level of noise n_k in the force estimation

9

Force sensor resolution study

10

ICRA 2012 - St Paul, Minnesota

11

ICRA 2012 - St Paul, Minnesota

W_F choice help

Transducer resonant frequency: 3 Hz

Conclusion

 $F_{x}(t) \longrightarrow Transducer \longrightarrow x(t)$

The force estimation has to take into account the behavior due to the mass inertia

Estimation processing driven by one parameter

The parameter effect on the trade-off resolution / bandwidth is fully characterized

Design Drawbacks

Open-loop design

Extreme sensitivity to external disturbing forces (seismic and subsonic vibrations, ...)

In progress

New modeling including these disturbances

Future design with real-time disturbances measurement and closed-loop disturbances compensation

J. Abadie, E. Piat, S. Oster, M. Boukallel, *Modeling and experimentation of a passive low frequency nanoforce sensor based on diamagnetic levitation*, **Sensors and Actuators: A. Physical**, 2012, 173:227-237

E. Piat, J. Abadie, S. Oster, *Nanoforce estimation based on Kalman filtering and applied to a force sensor using diamagnetic levitation*, **Sensors and Actuators: A. Physical**, 2012, 179:223-236

SPECIMeN Group

Sensing strategies, Perception and Characterization at Micro- and Nano-scales

AS2M Dep^t – Automatic Control and Micro-Mechatronic Systems

http://www.femto-st.fr/fr/Departements-de-recherche/AS2M/Accueil/